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1 Abstract

Anomaly detection is a technique to vi-
sualize the interior from the impedance
data measured on the ground surface for
geophysical applications from the oil field
prospecting to the land mine searching. We
have developed the direct inversion algo-
rithm for the electrical impedance tomog-
raphy based on the dual reciprocity bound-
ary element modeling, first for the two-
dimensional field and then for the three-
dimensional field problems. The valida-
tion has been made for the cases when the
impedance data are available for the elec-
trical current emanation diagonally injected
to the surface surrounding the field of in-
terest [1, 2]. In practical prospecting, how-
ever, this is not always the case, in which
the data are only accessible on the ground
surface. Present paper demonstrates with
some examples that the anomaly detection
is possible though the resolution is poor.

2 Introduction

Anomaly detection is an important area of
geophysical sensing, from oil field to land
mine searching. This is a technique to visu-
alize the interior from the impedance data
remotely sensed over the surface. The elec-
trical impedance sensing is one of the oldest
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techniques for geophysical exploration and
yet plays an important role among others
as it only requires a relatively inexpensive
apparatus. This is widely practiced [3–5],
in which the theory is based on the assump-
tion like an X-ray tomography so that the
practical applications are limited. It was
attempted with the impedance data for the
diagonal current injection which were possi-
ble with the boreholes drilled deep into the
ground [6]. There is another field of appli-
cation for medical care and monitoring [7].

The final goal is to achieve the imag-
ing of the body interior. For experimen-
tal purpose, Barber and Brown [8, 9] devel-
oped the apparatus called APT (applied po-
tential tomography), which was once com-
mercially available. The image reconstruc-
tion uses the backprojection algorithm sim-
ilar to the X-ray computed tomography in
which the currents are assumed to flow in
straight between a pair of the current elec-
trodes. Barber and Brown also used a direct
inversion approach, in which the currents
between the injection current electrodes are
partially considered to bend but the diffu-
sive nature of the current was ignored. Gen-
erally, this does not apply, and the cur-
rents flow through multipaths. Therefore,
in most inversion, iterative approach is used.
Equations must be established to satisfy the
Ohm’s law for the line integral for each as-
sumed path. The direct inversion is thus not
possible. Instead, the resistivity distribu-
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tion is iteratively modified so as to minimize
the error function defined as the norm be-
tween the potentials observed for a certain
current injection and the potentials eval-
uated for the above equations for the as-
sumed resistivity distribution chosen as de-
sign variables.

We successfully developed the direct
inversion algorithm for the electrical
impedance tomography based on the dual
reciprocity boundary element models in two
dimensions [1].The modeling and algorithm
were extended to the three dimensional field
, for which the cases when the boreholes
are provided to obtain the impedance data
for the diagonal current injection were ex-
amined [2]. The injecting conditions are all
similar to the so-called opposite method [7].
Here we demonstrate the cases when the
data are only accessible on the ground
surface. This condition is somewhat similar
to the so-called neighboring method [7].
Many electrical impedance imagings only
consider the cross-section of the field or two
dimensional plane, in which the current
flow is assumed to stay within the plane of
reference. This is not true, as the current
field is diffusive, the current paths will
be out of the plane, which should not be
ignored. Therefore, the three dimensional
modeling is essential.

3 Field and Boundary Element
Modeling

3.1 Nonhomogeneous Field Ex-
pression

The aim of the present study is to visual-
ize the conductivity distribution from the
data collected between the electrodes placed
on the ground surface. The cross-sectional
view is depicted in Fig. 1. The currents do
not much flow outside of a cubic region indi-
cated by dotted lines, in which an anomaly
is buried. This region is only considered for
the analysis with proper boundary condi-
tions imposed without loosing the general-
ity. The nonhomogeneous space is governed

by the Laplace equation

∇ · (σ∇ψ) = 0 (1)

with boundary conditions

ψ = ψ̂i on the electrodes

p =
∂ψ

∂n
= p̂ over the boundary

(2)

where ψ is the potential, p is its normal
derivative or flux and σ is the conductiv-
ity depending on the spatial position σ =
σ(x, y, z). It should be noted that for ho-
mogeneous field when σ is constant, eq.(1)
is

∇2ψ = 0 (3)

When the field is not homogeneous, eq.(1)
can be transformed into a Poisson equation
as

∇2ψ = b (4)

where

b = − 1

σ
∇σ · ∇ψ

=
1

σ

(
∂σ

∂x

∂ψ

∂x
+

∂σ

∂y

∂ψ

∂y
+

∂σ

∂z

∂ψ

∂z

) (5)

Thus the Laplace equation for the non-
homogeneous field is transformed into
the Poisson-type expression with the dis-
tributed forcing term. Eq.(5) shows that
when the distributions of b and ∇ψ are
known, the distribution of σ can be ob-
tained.

3.2 Dual Reciprocity in Charge
Simulation Method

Dual reciprocity method (DRM) was first
introduced to the boundary element solu-
tion of elastic field problems by Nardini and
Brebbia [10]. The boundary element solu-
tion of Poisson equation involves the domain
integral in association with the forcing term.
The presence of the inhomogeneous term de-
stroys the merit of dealing with the bound-
ary only in boundary element method. The
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DRM is a relief of the symtom, which re-
moves the domain integral at the expense
of the introduction of the particular solu-
tions. The procedure is exactly the same as
that in ref. [1] except that the problem is
now three dimensional [2]. The solution of
eq.(4) can be expressed as a linear combi-
nation of the general solution of the homo-
geneous Laplace equation and the particu-
lar solution of the inhomogeneous Poisson
equation, so that

ψ = ϕ + φ (6)

where ϕ is the fundamental solution of
∇2ϕ = 0 and φ is the particular solution
of ∇2φ = b. Substituting eq.(6) into eqs.(4)
and(5), one obtains the equation

∇2φ = 0 (7)

with the boundary conditions

φ =φ̂i = ψ̂i − ϕi on the electrode i

∂φ

∂n
= p̂− ∂ϕ

∂n
on the boundary

(8)

Eq.(7) is the Laplace equation and the
boundary element discretization leads to the
linear algbraic expression of standard form

[K]{φ} − [G]

{
∂φ

∂n

}
= 0 (9)

where [K] and [G] are a system and its com-
panion matrices, and {φ} and {∂φ

∂n
} are the

potential and its normal derivative or flux
vectors associated with the nodes on the
boundary. The boundary surface is divided
into M elements, for which N boundary
nodes and L internal points are considered.
The potential ψi at an arbitrary point i can
be expanded as

ψi =
N+L∑

`=1

ϕ∗i`α` +
M∑

j=1

φ∗ijβj

= {ϕ∗}T
i {α}+ {φ∗}T

i {β}
(10)

φ∗ij is the fundamental solution of the homo-

geneous equation ∇2φ = 0, which is evalu-
ated at point i for a unit source excitation at

point j on the boundary (j = 1, 2, . . . , M).
Coefficient βj therefore corresponds to the
fictitious charge associated with the bound-
ary element j. ϕ∗i` is the particular solution
of the Poisson equation

∇2ϕi` = fi` (11)

The essence of the DRM lies in the expan-
sion of the forcing term in terms of the ap-
proximate function fi` arbitrary chosen, so
that

bi =
N+L∑

`=1

fi`α` =
N+L∑

`=1

(∇2ϕ∗i`)α`

(` = 1, 2, . . . , N + L)

(12)

In matrix form,

{b} = [F ]{α} or {α} = [F ]−1{b} (12′)

where Fi` = fi`. After ref. [10], the approx-
imate function is here chosen to be

fi` = 1 + ri` or fi` =
ri`

rmax

(13)

where ri` is the distance between the source
point i and the point of consideration `, and
rmax is the maximum distance. The partic-
ular solution that satisfies eq.(11) is

ϕ∗i` =
1

12rmax

r3
i` (14)

when the second function of eq.(13) is used.
Eq.(14) is different from the expression for
the two dimensional case [1].

The surface is divided into triangular sur-
face elements and the nodes are taken at the
element corners and the fictitious or sim-
ulated charges are placed at the centers,
which are shown in Fig. 2.

The fundamental solution of the homoge-
neous equation is

φ∗ij =
1

4πrij

(15)

where rij is the distance between two points
i and j, that is

rij =
√

X2 + Y 2 + Z2

where

X =xi − xj, Y = yi − yj and Z = zi − zj
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which is also different from the one for the
two dimensional. Coefficient βj corresponds
to the magnitude of the fictitious charge
placed at point j. Eqs.(8)and(12′) are sub-
stituted into eq.(9) and the discretized equa-
tion for the Poisson equation is obtained as
follows, in the end.

{ψ} − [G]

{
∂ψ

∂n

}

=([K][H]− [G][Q]){α}
(16)

where

[K] = [E]([G]−1)T [U ] (17)

and

{β} = ([G]−1)T [U ]{φ} (18)

The definition of the components of the ma-
trices is the same as those in ref. [2], which
are

Eij =
1

2

M∑
m=1

∫

Γm

φ∗im
∂φ∗jm
∂n

dΓm

+
1

2

M∑
m=1

∫

Γm

φ∗jm
∂φ∗im
∂n

dΓm (19)

Gij =

∫

rj

φ∗ijdΓj

Hij = ϕ∗i`

Qi` =
∂ϕ∗i`
∂n

= q∗i`

(20)

(` = 1, 2, . . . , N + L)

(i, j = 1, 2, . . . , M)

and, when the constant elements are used,

Uij = the area of element j (i = j)

Uij = 0 (i 6= j)
(21)

3.3 Direct Inversion

Eq.(16) are solved for {α}, that is, {b} with
eq.(12′), under the boundary conditions and
the potential data {ψ} ”measured” on the
boundary, for the boundary condition {∂ψ

∂n
}

when the current is injected between a pair
of the electrodes chosen. Eq.(5) can be writ-
ten as

∇Ri · ∇ψi

=

(
∂Ri

∂x

)
∂ψi

∂x
+

(
∂Ri

∂y

)
∂ψi

∂y
+

(
∂Ri

∂z

)
∂ψi

∂z

= b
(k)
i (22)

where R is the logarithmic resistivity coef-
ficient Ri = −`nσi, (σi = σ(xi, yi, zi)) and
∂Ri

∂x
is the slope of R in x-direction about

point i. ψi = ψ(xi, yi.zi) is the potential
at point i and ∂ψi

∂x
is the potential gradient

in x-direction about point i in the domain.
The potential ψi and its gradients ∂ψi

∂x
,∂ψi

∂y

and ∂ψi

∂z
in the arbitrary point i are evalu-

ated by eq.(10) as {α} and {β} (eq.(18))
are now known. The three slopes of the log-
arithmic resistivity coefficient are unknowns
in eq.(22). One has three equations of the
form of eq.(22) for the three times of “the
measurements” with different current injec-
tion (k = 1, 2 and 3), which can be solved
for the unknowns.

When the field is isotropic and the slope
is the same for each direction, or ∂R

∂x
=

∂R
∂y

= ∂R
∂z

, the solution is theoretically ob-

tained to the data for a single measurement.
In practical situation, we establish as many
equations for the measured potential data
as the times of injection. These simulta-
neous equations are over-determined, which
are however solved in the least square sense.

4 Numerical Demonstration

For the test case, a region closed by a dotted
lines, depicted in Fig. 1, is taken. A cubic
field (103m3) as shown in Fig. 2 is considered
for simulation. The surfaces are divided into
the triangular elements and the electrodes
are placed only on the top surface (which
corresponds to a part of the ground surface).
As the current is supplied between a pair of
the electrodes, the currents leaking out into
the outer region will be very small. The
natural boundary condition is thus set ex-
cept on the electrodes. The case when there
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placed is a cubic anomaly (23 m3, conductiv-
ity is 10% higher) is buried in the middle.
The logarithmic resistivity coefficient could
be obtained by integrating the solutions ∂Ri

∂x
,

∂Ri

∂y
and ∂Ri

∂z
for a cubic pixel i along x, y

and z directions. For the “measured” data,
the solution of the forward problem is used.
Fig. 3(a) shows the distribution of the rela-
tive conductivity distribution thus inverted.
The simultaneous equations are formed for
the injections of every possible pairs of elec-
trode combination.

5 Concluding Remarks

The direct inversion algorithm for the three
dimensional prospecting was proposed and
the numerical simulation was extended to
the case when the data are accessible only
on the ground surface. The method pro-
posed was successful. The demonstration
shows that the inverted distribution is capa-
ble of identifying the position of an anomaly
but the distribution resoution is not so clear
as in the case when the data are available
over the additional surfaces surrounding the
region of inspection with the boreholes pro-
vided down into the ground [2].

The purpose of the present paper is to
confirm the capability of the anomaly de-
tection from the data only obtained over
the ground surface. No further considera-
tion such as the minimum number of the
electrodes, sensitivity analysis, are included.
Computation time required for the inversion
is of the order of a few hours on PC.
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The data is collected only from the electrodes arrayed on the ground surface

Fig. 1: Field and electrode arrangement
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Fig. 2: 3D field with the electrodes on the surface
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(a) An example of the original distribution and the potential changes (cut in the plane z=5.0, x=5.0)

(b) The relative resisitivity distribution inverted (cut in the plane z=5.0, x=5.0)

Fig. 3: A cube object with the relative conductivity 10% higher, buried under the ground


